Virtual Screening Guided Design, Synthesis and Bioactivity Study of Benzisoselenazolones (BISAs) on Inhibition of c-Met and Its Downstream Signalling Pathways

Int J Mol Sci. 2019 May 20;20(10):2489. doi: 10.3390/ijms20102489.

Abstract

c-Met is a transmembrane receptor tyrosine kinase and an important therapeutic target for anticancer drugs. In this study, we designed a small library containing 300 BISAs molecules that consisted of carbohydrates, amino acids, isothiourea, tetramethylthiourea, guanidine and heterocyclic groups and screened c-Met targeting compounds using docking and MM/GBSA. Guided by virtual screening, we synthesised a series of novel compounds and their activity on inhibition of the autophosphorylation of c-Met and its downstream signalling pathway proteins were evaluated. We found a panel of benzisoselenazolones (BISAs) obtained by introducing isothiourea, tetramethylthiourea and heterocyclic groups into the C-ring of Ebselen, including 7a, 7b, 8a, 8b and 12c (with IC50 values of less than 20 μM in MET gene amplified lung cancer cell line EBC-1), exhibited more potent antitumour activity than Ebselen by cell growth assay combined with in vitro biochemical assays. In addition, we also tested the antitumour activity of three cancer cell lines without MET gene amplification/activation, including DLD1, MDA-MB-231 and A549. The neuroblastoma SK-N-SH cells with HGF overexpression which activates MET signalling are sensitive to MET inhibitors. The results reveal that our compounds may be nonspecific multitarget kinase inhibitors, just like type-II small molecule inhibitors. Western blot analysis showed that these inhibitors inhibited autophosphorylation of c-MET, and its downstream signalling pathways, such as PI3K/AKT and MARK/ERK. Results suggest that bensoisoselenones can be used as a scaffold for the design of c-Met inhibiting drug leads, and this study opens up new possibilities for future antitumour drug design.

Keywords: benzoisoselenone; c-Met inhibition; docking; molecular dynamics simulation; virtual screening.

MeSH terms

  • Antineoplastic Agents / chemical synthesis*
  • Antineoplastic Agents / pharmacology
  • Binding Sites
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cyclodextrins / chemistry*
  • Humans
  • Molecular Docking Simulation
  • Protein Binding
  • Protein Kinase Inhibitors / chemical synthesis*
  • Protein Kinase Inhibitors / pharmacology
  • Proto-Oncogene Proteins c-met / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-met / chemistry
  • Proto-Oncogene Proteins c-met / metabolism
  • Signal Transduction*

Substances

  • Antineoplastic Agents
  • Cyclodextrins
  • Protein Kinase Inhibitors
  • benzoisoselenazolone
  • Proto-Oncogene Proteins c-met