The mitochondrial mRNA-stabilizing protein SLIRP regulates skeletal muscle mitochondrial structure and respiration by exercise-recoverable mechanisms

Nat Commun. 2024 Nov 13;15(1):9826. doi: 10.1038/s41467-024-54183-4.

Abstract

Decline in mitochondrial function is linked to decreased muscle mass and strength in conditions like sarcopenia and type 2 diabetes. Despite therapeutic opportunities, there is limited and equivocal data regarding molecular cues controlling muscle mitochondrial plasticity. Here we uncovered that the mitochondrial mRNA-stabilizing protein SLIRP, in complex with LRPPRC, is a PGC-1α target that regulates mitochondrial structure, respiration, and mtDNA-encoded-mRNA pools in skeletal muscle. Exercise training effectively counteracts mitochondrial defects caused by genetically-induced LRPPRC/SLIRP loss, despite sustained low mtDNA-encoded-mRNA pools, by increasing mitoribosome translation capacity and mitochondrial quality control. In humans, exercise training robustly increases muscle SLIRP and LRPPRC protein across exercise modalities and sexes, yet less prominently in individuals with type 2 diabetes. SLIRP muscle loss reduces Drosophila lifespan. Our data points to a mechanism of post-transcriptional mitochondrial regulation in muscle via mitochondrial mRNA stabilization, offering insights into how exercise enhances mitoribosome capacity and mitochondrial quality control to alleviate defects.

MeSH terms

  • Animals
  • DNA, Mitochondrial / genetics
  • DNA, Mitochondrial / metabolism
  • Drosophila / metabolism
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / metabolism
  • Exercise / physiology
  • Female
  • Humans
  • Male
  • Mice
  • Mitochondria, Muscle* / metabolism
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / metabolism
  • Muscle, Skeletal* / metabolism
  • Neoplasm Proteins
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / genetics
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / metabolism
  • Physical Conditioning, Animal*
  • RNA Stability
  • RNA, Messenger* / genetics
  • RNA, Messenger* / metabolism
  • RNA, Mitochondrial / genetics
  • RNA, Mitochondrial / metabolism
  • RNA-Binding Proteins* / genetics
  • RNA-Binding Proteins* / metabolism

Substances

  • RNA-Binding Proteins
  • RNA, Messenger
  • LRPPRC protein, human
  • SLIRP protein, human
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Mitochondrial Proteins
  • DNA, Mitochondrial
  • Lrpprc protein, mouse
  • mitochondrial messenger RNA
  • RNA, Mitochondrial
  • PPARGC1A protein, human
  • Neoplasm Proteins