Drug repositioning is a method for exploring new effects of existing drugs, the safety and pharmacokinetics of which have been confirmed in humans. Here, we demonstrate the potential drug repositioning of midazolam (MDZ), which is used for intravenous sedation, as an inhibitor of inflammatory bone resorption. We cultured a mouse macrophage-like cell line with or without MDZ and evaluated its effects on the induction of differentiation of these cells into osteoclasts. For in vivo investigations, we administered lipopolysaccharide (LPS) together with MDZ (LPS+MDZ) to the parietal region of mice and evaluated the results based on the percentage of bone resorption and calvaria volume. Furthermore, we examined the effects of MDZ on the production of reactive oxygen species (ROS) in cells and on its signaling pathway. MDZ inhibited osteoclast differentiation and bone resorption activity. In animal studies, the LPS+MDZ group showed a decreasing trend associated with the rate of bone resorption. In addition, the bone matrix volume in the LPS+MDZ group was slightly higher than in the LPS only group. MDZ inhibited osteoclast differentiation by decreasing ROS production and thereby negatively regulating the p38 mitogen-activated protein kinase pathway. Thus, we propose that MDZ could potentially be used for treating inflammatory bone resorption, for example, in periodontal disease.
Keywords: bone resorption; drug repositioning; inflammation; midazolam; reactive oxygen species; signal transduction.