Proteasomes are responsible for the turnover of most cellular proteins, and thus are critical to almost all cellular activities. A substrate entering the proteasome must first bind to a substrate receptor. Substrate receptors can be classified as ubiquitin receptors and non-ubiquitin receptors. The intrinsic ubiquitin receptors, including proteasome regulatory particle base subunits 1, 10 and 13 (Rpn1, Rpn10, and Rpn13), determine the capability of the proteasome to recognize a ubiquitin chain, and thus provide selectivity for the 26S proteasome. However, the non-ubiquitin receptors, including proteasome activator 200 (PA200) and PA28γ, have received great attention due to their remarkable compensatory roles relative to canonical ubiquitin-mediated proteasomal degradation. Herein we review recent advances in understanding the contributions of these substrate receptors to proteasomal degradation, and introduce their substrates and interacting factors. We also provide insights into their biological functions related to spermatogenesis, immune responses, cellular homeostasis, and tumour development. Finally, we summarize advances in developing small-molecule inhibitors of these substrate receptors and discuss their potential as drug targets.
Keywords: PA200; PA28γ; Rpn1; Rpn10; Rpn13; drug targets; proteasomal degradation; substrate receptor.
© 2018 Cambridge Philosophical Society.