Background: Alzheimer's disease (AD) is a leading neurodegenerative disorder without effective treatments. The nonlinear dynamic nature of AD pathophysiology suggested that multiple pharmacological actions of anti-AD drugs should be elucidated. 9-Methylfascaplysin (9-MF) was previously designed and synthesized as a novel anti-AD candidate.
Methods and results: In this study, 9-MF at low concentrations significantly prevented cognitive impairments with similar efficacy as donepezil in APP/PS1 transgenic mice. In addition, 9-MF potently reduced β-amyloid (Aβ)-associated neuroinflammation and tau-associated synaptic damage in vivo. 9-MF-regulated microglia-specific differentially phosphorylated proteins (DPPs) were mainly enriched in neuroinflammation, while 9-MF-regulated neuron-specific DPPs were enriched in synaptic regulation, as revealed by a quantitative phosphoproteomic approach. A phosphoproteome-kinome algorithm further identified that rho-associated coiled-coil kinase 2 (ROCK2) and glycogen synthase kinase 3β (GSK3β) ranked high in 9-MF-downregulated kinase perturbations. 9-MF possessed high affinities for ROCK2 and GSK3β, which was confirmed by in vitro kinase activity assay. The protective effects of 9-MF were abolished by ROCK2 knockdown in Aβ-treated BV2 microglial cells, and by GSK3β knockdown in glyceraldehyde-treated SH-SY5Y neuronal cells, respectively.
Conclusions: All these results supported that 9-MF produced anti-AD effects via cell-specific inhibition of ROCK2 and GSK3β in microglia and neurons, respectively.
Keywords: 9‐Methylfascaplysin; Alzheimer's disease; GSK3β; ROCK2; chemical‐proteomics; omics‐based approaches; phosphoproteomics.
© 2024 The Author(s). CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.