Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

345 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark.
Brinker TJ, Hekler A, Hauschild A, Berking C, Schilling B, Enk AH, Haferkamp S, Karoglan A, von Kalle C, Weichenthal M, Sattler E, Schadendorf D, Gaiser MR, Klode J, Utikal JS. Brinker TJ, et al. Among authors: von kalle c. Eur J Cancer. 2019 Apr;111:30-37. doi: 10.1016/j.ejca.2018.12.016. Epub 2019 Feb 22. Eur J Cancer. 2019. PMID: 30802784 Free article.
Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study.
Maron RC, Utikal JS, Hekler A, Hauschild A, Sattler E, Sondermann W, Haferkamp S, Schilling B, Heppt MV, Jansen P, Reinholz M, Franklin C, Schmitt L, Hartmann D, Krieghoff-Henning E, Schmitt M, Weichenthal M, von Kalle C, Fröhling S, Brinker TJ. Maron RC, et al. Among authors: von kalle c. J Med Internet Res. 2020 Sep 11;22(9):e18091. doi: 10.2196/18091. J Med Internet Res. 2020. PMID: 32915161 Free PMC article.
A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task.
Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, Schilling B, Haferkamp S, Schadendorf D, Fröhling S, Utikal JS, von Kalle C; Collaborators. Brinker TJ, et al. Among authors: von kalle c. Eur J Cancer. 2019 Apr;111:148-154. doi: 10.1016/j.ejca.2019.02.005. Epub 2019 Mar 8. Eur J Cancer. 2019. PMID: 30852421 Free article.
Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task.
Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, Schilling B, Haferkamp S, Schadendorf D, Holland-Letz T, Utikal JS, von Kalle C; Collaborators. Brinker TJ, et al. Among authors: von kalle c. Eur J Cancer. 2019 May;113:47-54. doi: 10.1016/j.ejca.2019.04.001. Epub 2019 Apr 10. Eur J Cancer. 2019. PMID: 30981091 Free article.
Deep neural networks are superior to dermatologists in melanoma image classification.
Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, Weichenthal M, Klode J, Schadendorf D, Holland-Letz T, von Kalle C, Fröhling S, Schilling B, Utikal JS. Brinker TJ, et al. Among authors: von kalle c. Eur J Cancer. 2019 Sep;119:11-17. doi: 10.1016/j.ejca.2019.05.023. Epub 2019 Aug 8. Eur J Cancer. 2019. PMID: 31401469 Free article.
Prediction of melanoma evolution in melanocytic nevi via artificial intelligence: A call for prospective data.
Sondermann W, Utikal JS, Enk AH, Schadendorf D, Klode J, Hauschild A, Weichenthal M, French LE, Berking C, Schilling B, Haferkamp S, Fröhling S, von Kalle C, Brinker TJ. Sondermann W, et al. Among authors: von kalle c. Eur J Cancer. 2019 Sep;119:30-34. doi: 10.1016/j.ejca.2019.07.009. Epub 2019 Aug 8. Eur J Cancer. 2019. PMID: 31401471 Free article.
345 results