Further structure-activity studies of desferrithiocin analogues are carried out. (S)-Desazadesmethyldesferrithiocin, 2-(2-hydroxyphenyl)-Delta2-thiazoline-4(S)-carboxylic acid, serves as the principal framework in the current paper. Desazadesmethyldesferrithiocin can be structurally altered with facility, and data are already available on its iron-clearing properties and toxicity parameters. Four different kinds of structural modifications of this framework are undertaken: introduction of hydroxy, carboxy, or methoxy groups on the aromatic ring; alteration of the thiazoline ring; increasing the distance between the ligand donor atoms; and benz-fusion of the aromatic rings. The structural modifications described are shown to have a tremendous impact on both the iron clearance and toxicity profiles of the desazadesmethyldesferrithiocin molecule. All of the compounds are assessed in a bile-duct-cannulated rodent model to determine iron clearance efficiency. Ligands which demonstrate an efficiency of greater than 2% are carried forward to the iron-overloaded primate for iron-clearing measurements. Ligands with efficiencies greater than 3% in the primate are then evaluated in a formal toxicity study in rodents. On the basis of the results of the present work, 2-(2, 4-dihydroxyphenyl)-Delta2-thiazoline-4(S)-carboxylic acid is a promising candidate for clinical evaluation.