Physiological and pathophysiological aspects of thyrotropin-releasing hormone gene expression in the human hypothalamus

Thyroid. 1998 Oct;8(10):921-8. doi: 10.1089/thy.1998.8.921.

Abstract

Although the tripeptide thyrotropin-releasing hormone (TRH) was the first hypothalamic hormone to be isolated and characterized, only very few data were available on the central component of the hypothalamus-pituitary-thyroid (HPT) axis in the human brain until recently. We used immunocytochemistry to describe, for the first time, the distribution of TRH-containing cells and fibers in the human hypothalamus. Brain material was obtained with a short postmortem delay followed by fixation in paraformaldehyde, glutaraldehyde, and picric acid. Many TRH-containing cells were present in the paraventricular nucleus (PVN), especially in its dorsocaudal part. Some TRH cells were found in the suprachiasmatic nucleus (SCN), which is the circadian clock of the brain, and in the sexually dimorphic nucleus (SDN), which is in agreement with earlier observations in the rat hypothalamus. Dense TRH-containing fiber networks were present not only in the median eminence but also in a number of other hypothalamic areas, suggesting a physiological function of TRH as a neuromodulator or neurotransmitter in the human brain, in addition to its neuroendocrine role in pituitary secretion of thyroid-stimulating hormone (TSH). As a next step, we developed a technique for TRH mRNA in situ hybridization using a [35S] CTP-labeled TRH cRNA antisense probe in formalin-fixed paraffin-embedded sections. Numerous heavily labeled TRH mRNA-containing neurons were detected in the caudal part of the PVN, while some cells were present in the SCN and in the perifornical area. These results demonstrated the value of in situ hybridization for elucidating the chemoarchitecture of the human hypothalamus in routinely fixed autopsy tissue and enabled us to perform quantitative studies. As part of the neuroendocrine response to disease, serum concentrations of thyroid hormone decrease without giving rise to elevated concentrations of TSH, suggesting altered feedback control at the level of the hypothalamus and/or pituitary. In order to establish whether decreased activity of TRH cells in the PVN contributes to the persistence of low TSH levels in nonthyroidal illness (NTI), hypothalamic TRH gene expression was investigated in patients whose plasma concentrations of thyroid hormones had been measured just before death. Quantitative in situ hybridization showed a positive correlation of total TRH mRNA in the PVN and serum concentrations of TSH and triiodothyronine (T3) less than 24 hours before death, supporting our hypothesis. Current experiments aim at elucidating the mechanism by which hypothalamic thyroid hormone feedback control in TRH cells of patients with NTI is changed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Disease
  • Gene Expression*
  • Humans
  • Hypothalamus / chemistry
  • Hypothalamus / metabolism*
  • RNA, Messenger / analysis
  • Rats
  • Thyrotropin-Releasing Hormone / analysis
  • Thyrotropin-Releasing Hormone / genetics*
  • Thyrotropin-Releasing Hormone / physiology
  • Tissue Distribution

Substances

  • RNA, Messenger
  • Thyrotropin-Releasing Hormone