Interspecies differences in renal localization of cyclooxygenase isoforms: implications in nonsteroidal antiinflammatory drug-related nephrotoxicity

Toxicol Pathol. 1998 Sep-Oct;26(5):612-20. doi: 10.1177/019262339802600504.

Abstract

Cyclooxygenase (COX) exists in 2 related but unique isoforms: one is constitutive (COX-1) and functions in normal cell physiology, and the other is inducible (COX-2) and is expressed in response to inflammatory stimuli. Nonsteroidal antiinflammatory drugs (NSAIDs) cause renal toxicity following inhibition of renal cyclooxygenases. Humans and animals exhibit differences in susceptibility to NSAID-related renal toxicity, which may be associated with differences in expression of 1 or both isoforms of COX in the kidney. In this study, we evaluated COX-1 and COX-2 expression in the kidneys of mixed-breed dogs, Sprague-Dawley rats, cynomolgus monkeys, and humans. In addition, the effect of volume depletion on renal COX expression was investigated in rats, dogs, and monkeys. COX expression was evaluated using 1 or more of the following procedures: reverse transcriptase polymerase chain reaction, in situ hybridization, and immunohistochemistry. We demonstrated that both COX isoforms are expressed in the kidneys of all species examined, with differences in the localization and level of basal expression. COX-1 is expressed at high levels in the collecting ducts and renal vasculature of all species and in a small number of papillary interstitial cells in rats, monkeys, and humans. Basal levels of COX-2 are present in the maculae densa, thick ascending limbs, and papillary interstitial cells in rats and dogs and in glomerular podocytes and small blood vessels in monkeys and humans. COX-2 expression is markedly increased in volume-depleted rats and dogs but not monkeys. These results indicate that significant interspecies differences exist in the presence and distribution of COX isoforms, which may help explain the difference in species susceptibility to NSAID-related renal toxicity.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Animals
  • Anti-Inflammatory Agents, Non-Steroidal / toxicity*
  • Cyclooxygenase 1
  • Cyclooxygenase 2
  • Cyclooxygenase 2 Inhibitors
  • Cyclooxygenase Inhibitors / toxicity
  • Dogs
  • Humans
  • Immunohistochemistry
  • In Situ Hybridization
  • Isoenzymes / metabolism*
  • Kidney / enzymology*
  • Kidney Diseases / chemically induced*
  • Kidney Diseases / prevention & control*
  • Macaca fascicularis
  • Membrane Proteins
  • Middle Aged
  • Prostaglandin-Endoperoxide Synthases / metabolism*
  • RNA, Messenger / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Species Specificity

Substances

  • Anti-Inflammatory Agents, Non-Steroidal
  • Cyclooxygenase 2 Inhibitors
  • Cyclooxygenase Inhibitors
  • Isoenzymes
  • Membrane Proteins
  • RNA, Messenger
  • Cyclooxygenase 1
  • Cyclooxygenase 2
  • PTGS1 protein, human
  • PTGS2 protein, human
  • Prostaglandin-Endoperoxide Synthases
  • Ptgs1 protein, rat