The synaptonemal complex protein SCP3 is part of the lateral element of the synaptonemal complex, a meiosis-specific protein structure essential for synapsis of homologous chromosomes. We have investigated the fiber-forming properties of SCP3 to elucidate its role in the synaptonemal complex. By synthesis of SCP3 in cultured somatic cells, it has been shown that SCP3 can self-assemble into thick fibers and that this process requires the COOH-terminal coiled coil domain of SCP3, as well as the NH2-terminal nonhelical domain. We have further analyzed the thick SCP3 fibers by transmission electron microscopy and immunoelectron microscopy. We found that the fibers display a transversal striation with a periodicity of approximately 20 nm and consist of a large number of closely associated, thin fibers, 5-10 nm in diameter. These features suggest that the SCP3 fibers are structurally related to intermediate filaments. It is known that in some species the lateral elements of the synaptonemal complex show a highly ordered striated structure resembling that of the SCP3 fibers. We propose that SCP3 fibers constitute the core of the lateral elements of the synaptonemal complex and function as a molecular framework to which other proteins attach, regulating DNA binding to the chromatid axis, sister chromatid cohesion, synapsis, and recombination.