The molecular genetics of endocrine tumours

J Pediatr Endocrinol Metab. 1998 Mar-Apr;11(2):195-228. doi: 10.1515/jpem.1998.11.2.195.

Abstract

The molecular genetics of endocrine tumours is an area of great interest, due to the heterogeneity of endocrine tumour types, the association of hormone over-production in some cases, and the wide variation in tumour behaviour. Genes implicated fall into functional categories such as oncogenes, in which mutations tend to cause activation, and tumour suppressor genes, in which mutations lead to loss of function. Oncogenes include the receptor tyrosine kinases such as RET, signal transduction proteins and other molecules such as cell cycle regulators and nuclear proteins. Tumour suppressor genes include cell cycle regulators such as p53 and other molecules such as the MEN 1 gene. Loss of heterozygosity studies help in the initial localisation of the latter. Endocrine tumours, as with other tumours, develop as a result of a combination of genetic events, and in the paediatric age group they often occur in the setting of familial cancer syndromes. In this review we analyse the main genetic lesions which have been described in endocrine tumours. There has been an explosion of knowledge in the last 5 years including the identification of the causative genes for MEN 2 and most recently for MEN 1. Characterisation of such genes also aids in the study of somatic mutations in sporadic versions of the same tumour types as occur in the familial syndromes. Identification of a genetic predisposition to a certain tumour has management implications that are still to be clarified in most cases, although in the case of MEN 2 the guidelines for prophylactic thyroidectomy are generally well accepted.

Publication types

  • Review

MeSH terms

  • Animals
  • Endocrine Gland Neoplasms / genetics*
  • Female
  • Genes, Tumor Suppressor
  • Humans
  • Male
  • Molecular Biology*
  • Oncogenes