Fragile X syndrome is the most frequent form of inherited mental retardation and it is caused by deficiency of FMRP, the protein encoded by the FMR1 gene. FMRP is a RNA binding protein of unknown function which is associated with ribosomes. FMRP is found in the cytoplasm, but it is endowed with a nuclear export signal (NES), encoded by exon 14, and a nuclear localization signal (NLS). Characterization of the FMRP NES and NLS domains is presented here. We show by site-directed mutagenesis that three leucine residues in exon 14 are functionally important for the cytoplasmic localization of FMRP. Changing these leucines to serine resulted in a nuclear localization, while another nonconservative change (leucine to tyrosine) did not show such an effect. We also show that the NLS activity is localized between residues 115 and 150, a region that lacks stretches of basic residues. Such stretches are typical of nuclear localization signals that act through the important alpha pathway. The region between residues 151 and 196 can reinforce the NLS activity. A truncated construct containing the N-terminal region of FMRP (residues 1-114) is strikingly concentrated in the nucleus. This suggests that it may contain a domain of strong affinity with a nuclear component.