In normal tissues, the processes of growth, remodeling, and morphogenesis are tightly regulated by the stress field; conversely, stress may be generated by these processes. We demonstrate that solid stress inhibits tumor growth in vitro, regardless of host species, tissue of origin, or differentiation state. The inhibiting stress for multicellular tumor spheroid growth in agarose matrices was 45 to 120 mm Hg. This stress, which greatly exceeds blood pressure in tumor vessels, is sufficient to induce the collapse of vascular or lymphatic vessels in tumors in vivo and can explain impaired blood flow, poor lymphatic drainage, and suboptimal drug delivery previously reported in solid tumors. The stress-induced growth inhibition of plateau-phase spheroids was accompanied, at the cellular level, by decreased apoptosis with no significant changes in proliferation. A concomitant increase in the cellular packing density was observed, which may prevent cells from undergoing apoptosis via a cell-volume or cell-shape transduction mechanism. These results suggest that solid stress controls tumor growth at both the macroscopic and cellular levels, and thus influences tumor progression and delivery of therapeutic agents.