Polyprenylphosphate-pentoses in mycobacteria are synthesized from 5-phosphoribose pyrophosphate

J Biol Chem. 1996 Nov 22;271(47):29652-8. doi: 10.1074/jbc.271.47.29652.

Abstract

Polyprenylphosphate-arabinose (in which the polyprenyl unit is found both as decaprenyl and octahydroheptaprenyl) is a donor of mycobacterial cell wall arabinosyl residues. Because of this important role, its biosynthetic pathway, and that of the related lipid, polyprenylphosphate-D-ribose, was investigated. Surprisingly, phosphoribose pyrophosphate was shown to be a key intermediate on the pathway to both polyprenylphosphate-D-pentoses. Thus, incubation of 5-phospho-D-[14C]ribose pyrophosphate with membranes prepared from Mycobacterium smegmatis resulted in the presence of organic-soluble radioactivity that was shown to be, in part, polyprenylphosphate-[14C]arabinose and polyprenylphosphate-[14C]ribose. Two additional intermediates, polyprenylphosphate-5-phospho[14C]ribose and polyprenylphosphate-5-phospho[14C]arabinose, were identified. Further experiments showed that the mature polyprenylphosphate-ribose is formed from phosphoribose pyrophosphate via a two-step pathway involving a transferase to form polyprenylphosphate-5-phosphoribose and then a phosphatase to form the final polyprenylphosphateribose. Polyprenylphosphate-arabinose is formed by a similar pathway with an additional step being the epimerization at C-2 of the ribosyl residue. This epimerization occurs at either the level of phosphoribose pyrophosphate or at the level of polyprenylphosphate-5-phosphoribose.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Carbon Radioisotopes
  • Diphosphates / metabolism*
  • Mycobacterium / metabolism*
  • Pentoses / biosynthesis*

Substances

  • Carbon Radioisotopes
  • Diphosphates
  • Pentoses