Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes

Cancer Res. 1996 Nov 1;56(21):4836-40.

Abstract

To date, at least four genes involved in DNA mismatch repair (MMR) have been demonstrated to be altered in the germline of patients with hereditary nonpolyposis colon cancer: hMSH2, hMLH1, hPMS1, and hPMS2. Additionally, loss of MMR function has been demonstrated to lead to the phenomenon of microsatellite instability (MIN) in tumors from these patients. In this study, we have examined the protein expression pattern of hMSH2 and hMLH1 by immunohistochemistry in paraffin-embedded tumors from 7 patients with MIN+ sporadic cancer, 13 patients with familial colorectal cancer, and 12 patients meeting the strict Amsterdam criteria for hereditary nonpolyposis colon cancer. The relationship between the expression of these two gene products, the presence of germline or somatic mutations, and the presence of tumor MIN was examined. Nineteen of the 28 tumors studied demonstrated MIN, whereas mutations in hMLH1 and hMSH2 were detected in 6 and 2 patients, respectively. Of the eight MIN+/mutation+ cases, the absence of protein expression was observed for the corresponding gene product in all but one case (missense mutation in hMLH1). However, seven MIN+/mutation- cases also showed no expression of either hMLH1 (n = 5), hMSH2 (n = 1), or both (n = 1), whereas four MIN+/mutation- cases demonstrated normal expression for both. None of the MIN-/mutation- cases (n = 9) demonstrated an altered expression pattern for either protein. These data suggest that examination of protein expression by immunohistochemistry may be a rapid method for prescreening tumors for mutations in the MMR genes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptor Proteins, Signal Transducing
  • Carrier Proteins
  • Colorectal Neoplasms / genetics*
  • Colorectal Neoplasms, Hereditary Nonpolyposis / genetics*
  • DNA Repair / genetics*
  • DNA-Binding Proteins*
  • Humans
  • Immunohistochemistry
  • Microsatellite Repeats*
  • MutL Protein Homolog 1
  • MutS Homolog 2 Protein
  • Mutation*
  • Neoplasm Proteins / analysis
  • Neoplasm Proteins / genetics*
  • Nuclear Proteins
  • Proto-Oncogene Proteins / analysis
  • Proto-Oncogene Proteins / genetics*

Substances

  • Adaptor Proteins, Signal Transducing
  • Carrier Proteins
  • DNA-Binding Proteins
  • MLH1 protein, human
  • Neoplasm Proteins
  • Nuclear Proteins
  • Proto-Oncogene Proteins
  • MSH2 protein, human
  • MutL Protein Homolog 1
  • MutS Homolog 2 Protein