We present an in situ semi-quantitative analysis of the global DNA methylation of the X chromosomes of the human female using antibodies raised against 5-methylcytosine. The antibodies were revealed by immunofluorescence. Images were recorded by a CCD camera and the difference in intensity of fluorescence between active (early replicating) and inactive (late-replicating) X chromosomes was measured. Global hypomethylation of the late-replicating X chromosomal DNA was observed in three cases of fibroblast primary cultures that were characterized by numerical and structural aberrations of the X chromosomes [46,X,ter rea(X;X), 48,XXXX and 46, X,t(X;15)]. In these cases, the difference between early and late-replicating X chromosomes was significantly greater than the intra-metaphasic variations, measured for a pair of autosomes, that result from experimental procedures. In cells with normal karyotypes, the differences between the two X chromosomes were in the range of experimental variation. These results demonstrated that late replication and facultative heterochromatinization of the inactive X are two processes that are not related to global hypermethylation of the DNA.