A set of monoclonal antibodies (mAbs) directed against the preS2 region of hepatitis B virus (HBV) surface antigen (HBsAg) was generated by immunization of mice with native HBsAg isolated from the blood of HBV carriers. According to (1) mutual competition binding of mAb to natural HBsAg, (2) recognition of full-length preS2 displayed on hepatitis B core particles, (3) recognition of synthetic partial preS2 peptides, and (4) Western blotting using a fusion protein library of truncated preS2 fragments of different legths, mAbs were assigned to two groups which coincided with groups I and III described by Mimms et al. [Virology 1990; 176:604-619]. All mAbs recognized linear epitopes and were glycosylation independent. Six out of eight fine-mapped mAbs recognized common epitopes located in the amino-terminal part of the preS sequence between amino acids 131 and 144 (group I), and inhibited binding of HBsAg to polymerized human serum albumin. Only two mAbs recognized a carboxy-terminal HBV-genotype-specific epitope covering amino acid residues 162 to 168 (group III). These mAbs bound to the highly variable proteolysis-sensitive hinge of preS2. Although four out of six mAbs targeted to immunodominant region I require the full-length sequence 131-L[Q/L]DPRVRGLY[F/L]PAG-144, two mAbs recognize the shorter and slightly carboxy-terminal-shifted sequences 133-DPRVRGLY[F/L]-141 or 135-PVRGLY[F/L]PAG-144. Together with previously identified preS2 epitopes 133-DPRVRGL-139, 137-RGLYFPA-143, and 132-QDPR-135, these data indicate diversity of the immune response against epitopes within the same immunodominant region. This diversity may be generated by a labile secondary structure. Sequence analysis suggests the transition from an alpha-helix to a loop structure at this site.