Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex

J Neurophysiol. 1993 Jul;70(1):448-52. doi: 10.1152/jn.1993.70.1.448.

Abstract

1. The postnatal maturation of gamma-aminobutyric acid (GABA)B receptor-mediated presynaptic inhibition was studied in brain slices of rat somatosensory cortex maintained in vitro. Patchclamp techniques were used to record whole-cell inhibitory post-synaptic currents from layer II-III neurons in animals from postnatal days (P) 7-24. Monosynaptic inhibitory postsynaptic currents (IPSCs) were evoked after N-methyl-D-aspartate (NMDA) and non-NMDA type glutamate receptors had been blocked by D-amino-phosphonovaleric acid (D-AP5, 20 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM), respectively. These IPSCs were solely mediated by postsynaptic GABAA receptors because they were abolished by bicuculline (10 microM), reversed polarity near the chloride equilibrium potential, and were recorded with electrodes that contained Cs+ to block postsynaptic GABAB responses. 2. When pairs of stimuli separated by intervals of 0.1-10 s were used to evoke IPSCs, the second response was depressed, an effect that was maximal at 300 ms. Evoked IPSCs were also depressed by baclofen (10 microM). The paired pulse depression (PPD) of monosynaptic IPSCs was decreased or eliminated by 2-OH-saclofen (200 microM). These findings indicate that PPD of monosynaptic IPSCs was due to presynaptic GABAB receptor-mediated inhibition of GABA release. 3. There were no significant differences in the amounts of PPD in neurons from different age groups (P7-10, P12-17, P22-24) at any interstimulus interval tested (0.1-10 s).(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aging / physiology*
  • Animals
  • Culture Techniques
  • Evoked Potentials, Somatosensory / physiology
  • Interneurons / physiology
  • Neural Inhibition / physiology*
  • Neurons / physiology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, GABA-A / physiology
  • Receptors, N-Methyl-D-Aspartate / physiology
  • Somatosensory Cortex / physiology*
  • Synapses / physiology*
  • gamma-Aminobutyric Acid / physiology*

Substances

  • Receptors, GABA-A
  • Receptors, N-Methyl-D-Aspartate
  • gamma-Aminobutyric Acid