Neurons in the visual cortex require correlated binocular activity during a critical period early in life to develop normal response properties. We present a model for how the disparity selectivity of cortical neurons might arise during development. The model is based on Hebbian mechanisms for plasticity at synapses between geniculocortical neurons and cortical cells. The model is driven by correlated activity in retinal ganglion cells within each eye before birth and additionally between eyes after birth. With no correlations present between the eyes, the cortical model developed only monocular cells. Adding a small amount of correlation between eyes at the beginning of development produced cortical neurons that were entirely binocular and tuned to zero disparity. However, if an initial phase of purely same-eye correlations was followed by a second phase of development that included correlations between eyes, the cortical model became populated with both monocular and binocular cells. Moreover, in the two-phase model, binocular cells tended to be selective for zero disparity, whereas the more monocular cells tended to have nonzero disparity. This relationship between ocular dominance and disparity has been observed in the visual cortex of the cat by other workers. Differences in the relative timing of the two developmental phases could account for the higher proportion of monocular cells found in the visual cortices of other animals.