A clofibrate-induced mouse liver cDNA library was prepared and used to isolate the coding sequence for soluble epoxide hydrolase. A 1668-base pair (bp) clone was isolated and found to contain a 1269-bp open reading frame coding for 423 amino acids. Subsequent RNA polymerase chain reaction resulted in the isolation of 396 bp of additional 5'-sequence. Translation of the resulting 1659-bp open reading frame produced a 553-residue protein (62,527 Da) containing deduced peptide segments that matched the amino acid sequences of six peptide fragments isolated previously from CNBr digests of pure murine soluble epoxide hydrolase. Neither the DNA nor the protein sequence showed significant similarity to other currently published sequences. Structural analysis of the soluble epoxide hydrolase coding region suggested at least one potential regulatory motif. Expression of the composite cDNA in COS-7 cells resulted in a 5-10-fold increase in soluble epoxide hydrolase activity and a similar increase in soluble epoxide hydrolase protein amount compared to mock-transfected or vector control-transfected cells. Treatment of C57BL/6J mice with clofibrate led to an approximately 4-fold increase in both soluble epoxide hydrolase enzyme activity and steady-state mRNA levels.