We have previously performed a genetic analysis of multiply affected families to map a locus responsible for Wilson disease (WND) to a 0.3-centimorgan (cM) region within chromosome 13q14.3, between D13S31 and D13S59. Here we describe the construction of a contig of approximately 4.5 Mb, which spans this region and extends from D13S25 to D13S59. This contig consists of 28 genomic yeast artificial chromosome (YAC) clones. Five critical crossover events have been defined in this interval in two unaffected (Centre d'Etudes du Polymorphisme Humain) and three WND families. The combination of sequence tagged site content mapping of YACs with both polymorphic and nonpolymorphic markers and recombination breakpoint mapping resulted in the following order of polymorphic markers: centromere-RB1-D13S25-AFM205vh2-D13S31-D13S22 7-D13S228-AFM238vc3-D13S133- AFM084xc5-D13S137-D13S169, D13S155-D13S59-telomere. The recombination/physical distance ratio varies from approximately 3000 kb per cM in the region between D13S31 and D13S25 to 6000 kb per cM in the region between D13S31 and D13S59. Three WND families exhibiting recombination between the disease locus and D13S31 or D13S59 were genotyped for additional markers in this region and further refined the location of the WND gene to between D13S155 and D13S133. Nine of the markers in this region of < 1 cM are polymorphic microsatellites (seven have observed heterozygosities of 70% or above) that will be extremely useful in prenatal and preclinical diagnosis of this disease. This physical map is an essential step in the isolation of the WND gene and is a framework for the identification of candidate genes.