In this paper, we discuss the issue of geometric distortion in magnetic resonance (MR) images used to plan stereotactic neurosurgical interventions. We analyze the process for the case of Fourier transform imaging and demonstrate that spatial misregistrations are fundamentally due to two causes: deviations of the magnetic field from its ideal value and blood flow. This enables us to relate the causes of geometric distortion to the MR imaging system, the patient and the stereotactic localizer frame. Based on the general model, we propose model refinements and discuss methods for the quantification and correction of all causes. The results of our calculations and experiments indicate that, using the proposed corrections, MRI and MR angiography should be considered valuable and reliable acquisition modalities for the planning of stereotactic neurosurgical interventions.