Abstract
Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3. RARG fusions overexpression leads to preleukemic phenotypes but fails to induce oncogenic transformation. However, the co-occurrence of RARG fusions and heterozygous Wt1 loss induce fully penetrant AML by activating MYC and HOXA9/MEIS1 targets. Leveraging Connectivity Map resources and high-throughput screening, we identify venetoclax, homoharringtonine, and daunorubicin as potential therapeutic options for RARG-AML. Overall, our findings provide pivotal insights into the molecular mechanisms governed by RARG fusions and enhanced by WT1 loss in AML development and propose a rational therapeutic strategy for RARG-AML.
© 2024. The Author(s).
MeSH terms
-
Animals
-
Antineoplastic Agents / pharmacology
-
Antineoplastic Agents / therapeutic use
-
Bridged Bicyclo Compounds, Heterocyclic
-
Cell Differentiation
-
Cell Line, Tumor
-
Cell Proliferation / genetics
-
Daunorubicin / pharmacology
-
Daunorubicin / therapeutic use
-
Gene Rearrangement*
-
Hematopoietic Stem Cells / metabolism
-
Homeodomain Proteins / genetics
-
Homeodomain Proteins / metabolism
-
Homoharringtonine
-
Humans
-
Leukemia, Myeloid, Acute* / genetics
-
Leukemia, Myeloid, Acute* / metabolism
-
Leukemia, Myeloid, Acute* / pathology
-
Leukemia, Promyelocytic, Acute* / drug therapy
-
Leukemia, Promyelocytic, Acute* / genetics
-
Leukemia, Promyelocytic, Acute* / metabolism
-
Leukemia, Promyelocytic, Acute* / pathology
-
Mice
-
Mice, Inbred C57BL
-
Oncogene Proteins, Fusion / genetics
-
Oncogene Proteins, Fusion / metabolism
-
Receptors, Retinoic Acid* / genetics
-
Receptors, Retinoic Acid* / metabolism
-
Retinoic Acid Receptor gamma*
-
Sulfonamides* / pharmacology
-
Sulfonamides* / therapeutic use
-
WT1 Proteins / genetics
-
WT1 Proteins / metabolism
Substances
-
Retinoic Acid Receptor gamma
-
Receptors, Retinoic Acid
-
Sulfonamides
-
venetoclax
-
Homeodomain Proteins
-
Homoharringtonine
-
Oncogene Proteins, Fusion
-
WT1 Proteins
-
Daunorubicin
-
homeobox protein HOXA9
-
WT1 protein, human
-
Antineoplastic Agents
-
Bridged Bicyclo Compounds, Heterocyclic