Objective: To establish morphological and radiomic models for early prediction of cognitive impairment associated with cerebrovascular disease (CI-CVD) in an elderly cohort based on cerebral magnetic resonance angiography (MRA).
Methods: One-hundred four patients with CI-CVD and 107 control subjects were retrospectively recruited from the 14-year elderly MRA cohort, and 63 subjects were enrolled for external validation. Automated quantitative analysis was applied to analyse the morphological features, including the stenosis score, length, relative length, twisted angle, and maximum deviation of cerebral arteries. Clinical and morphological risk factors were screened using univariate logistic regression. Radiomic features were extracted via least absolute shrinkage and selection operator (LASSO) regression. The predictive models of CI-CVD were established in the training set and verified in the external testing set.
Results: A history of stroke was demonstrated to be a clinical risk factor (OR 2.796, 1.359-5.751). Stenosis ≥ 50% in the right middle cerebral artery (RMCA) and left posterior cerebral artery (LPCA), maximum deviation of the left internal carotid artery (LICA), and twisted angles of the right internal carotid artery (RICA) and LICA were identified as morphological risk factors, with ORs of 4.522 (1.237-16.523), 2.851 (1.438-5.652), 1.373 (1.136-1.661), 0.981 (0.966-0.997) and 0.976 (0.958-0.994), respectively. Overall, 33 radiomic features were screened as risk factors. The clinical-morphological-radiomic model demonstrated optimal performance, with an AUC of 0.883 (0.838-0.928) in the training set and 0.843 (0.743-0.943) in the external testing set.
Conclusion: Radiomics features combined with morphological indicators of cerebral arteries were effective indicators for early signs of CI-CVD in elderly individuals.
Key points: Question The relationship between morphological features of cerebral arteries and cognitive impairment associated with cerebrovascular disease (CI-CVD) deserves to be explored. Findings The multipredictor model combining with stroke history, vascular morphological indicators and radiomic features of cerebral arteries demonstrated optimal performance for the early warning of CI-CVD. Clinical relevance Stenosis percentage and tortuosity score of the cerebral arteries are important risk factors for cognitive impairment. The radiomic features combined with morphological quantification analysis based on cerebral MRA provide higher predictive performance of CI-CVD.
Keywords: Artificial intelligence; Cerebral arteries; Cognitive dysfunction; Constriction; Radiomics.
© 2025. The Author(s), under exclusive licence to European Society of Radiology.