6PPD-quinone (6PPD-Q) as a derivative of the rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), is attracting intensive attention due to the significant hazard to ecosystems. However, the effective management of this type of contaminant has been scarcely reported. Hydrangea-like hollow O, Cl-codoped graphite-phase carbon nitride microspheres (HHCN), featuring open pores were readily prepared by molecular self-assembly and utilized to address 6PPD-Q in an aqueous system for the first time. More than 90 % of 6PPD-Q is efficiently photodegraded within 1 h on the as-prepared HHCN, which is 2.5 times more than that on bulk g-C3N4. Moreover, the as-synthesized HHCN demonstrates prominent photocatalytic activities for the degradation of doxycycline and tetracycline and the inactivation of Staphylococcus aureus (S. aureus) in an aqueous environment. The distinct hydrangea-like hollow structure imparts a large surface area and an abundance of active sites. In addition, the inclusion of Cl-3p orbitals also contributes to a reduction in the bandgap (2.01 eV) and facilitates carrier separation and transport. These combined characteristics synergistically enhance the remarkable photocatalytic performance of HHCN, which induces a more than 2 times higher degradation rate than bulk g-C3N4. This work offers a prospective route for template-free designing porous functional materials with improved properties and efficiently treating emerging pollutants such as 6PPD-Q, pathogenic bacteria, and antibiotic residues.
Keywords: 6PPD-Q photodegradation; Bacteria disinfection; Molecule self-assembly; Open porous carbon nitride microspheres; Treatment of antibiotic residues.
Copyright © 2025 Elsevier Inc. All rights reserved.