Non-image-forming photoreceptors improve visual orientation selectivity and image perception

Neuron. 2024 Dec 17:S0896-6273(24)00840-7. doi: 10.1016/j.neuron.2024.11.015. Online ahead of print.

Abstract

It has long been a decades-old dogma that image perception is mediated solely by rods and cones, while intrinsically photosensitive retinal ganglion cells (ipRGCs) are responsible only for non-image-forming vision, such as circadian photoentrainment and pupillary light reflexes. Surprisingly, we discovered that ipRGC activation enhances the orientation selectivity of layer 2/3 neurons in the primary visual cortex (V1) of mice by both increasing preferred-orientation responses and narrowing tuning bandwidth. Mechanistically, we found that the tuning properties of V1 excitatory and inhibitory neurons are differentially influenced by ipRGC activation, leading to a reshaping of the excitatory/inhibitory balance that enhances visual cortical orientation selectivity. Furthermore, light activation of ipRGCs improves behavioral orientation discrimination in mice. Importantly, we found that specific activation of ipRGCs in human participants through visual spectrum manipulation significantly enhances visual orientation discriminability. Our study reveals a visual channel originating from "non-image-forming photoreceptors" that facilitates visual orientation feature perception.

Keywords: intrinsically photosensitive retinal ganglion cells; orientation selectivity; primary visual cortex; visual discriminability.