Volatile phenylpropenes comprise one of the largest groups of plant phenylalanine-derived volatiles that not only possess ecological roles but also exhibit numerous pharmacological activities. Despite their wide distribution in the plant kingdom, biosynthesis of only a small subset of these compounds has been discovered. Here, we elucidated yet unknown steps in the biosynthesis of isoelemicin and elemicin using carrot (Daucus carota subsp. sativus), which produces a wide spectrum of volatile phenylpropenes, as a model system. Comparative transcriptomic analysis combined with metabolic profiling of two carrot cultivars producing different spectrums and levels of phenylpropene compounds revealed that biosynthesis of isoelemicin and elemicin could proceed via the (iso)eugenol-independent pathway, which diverges from the lignin biosynthetic pathway after sinapyl alcohol. Moreover, in planta results showed that two different NADPH-dependent reductases, a newly identified 5-methoxy isoeugenol synthase (DcMIS) and previously characterized (iso)eugenol synthase (DcE(I)GS1), both of which use sinapyl acetate as a substrate, are responsible for the biosynthesis of immediate precursors of isoelemicin and elemicin, respectively. In contrast to penultimate reactions, the final steps in the formation of these phenylpropenes are catalyzed by the same newly characterized methyltransferase, S-adenosyl-l-methionine:5-methoxy(iso)eugenol O-methyltransferase, that methylates the para-hydroxyl group of their respective precursors, thus completing the (iso)eugenol-independent route for the biosynthesis of isoelemicin and elemicin.
Keywords: Daucus carota subsp. sativus; DcMIS; and Dc5‐ME(I)OMT; elemicin; isoelemicin.
© 2024 Society for Experimental Biology and John Wiley & Sons Ltd.