Various factors play key roles in maintaining intestine homeostasis. Disruption of the balance may lead to intestinal inflammatory diseases (IBDs) and even colorectal cancer (CRC). Loss or gain of function of many key proteins can result in dysregulated intestinal homeostasis. Our research demonstrated that neural precursor cells expressed developmentally down-regulated 4-like protein, NEDD4L (NEDD4-2), a type of HECT family E3 ubiquitin ligase, played an important role in maintaining intestinal homeostasis. NEDD4L expression was significantly inhibited in intestinal epithelial cells (IECs) of patients with Crohn's disease (CD), ulcerative colitis (UC), and CRC. Global knockout of NEDD4L or its deficiency in IECs exacerbated dextran sulfate sodium (DSS)-/2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis and azoxymethane (AOM)/DSS-induced colorectal cancer. Mechanistically, NEDD4L deficiency in IECs inhibited the key ferroptosis regulator glutathione peroxidase 4 (GPX4) expression by reducing the protein expression of solute carrier family 3 member 2 (SLC3A2) without affecting its gene expression, ultimately promoting DSS-induced IEC ferroptosis. Importantly, ferroptosis inhibitors reduced the susceptibility of NEDD4L-deficient mice to colitis and colitis-associated colorectal cancer (CAC). Thus, NEDD4L was an important regulator in IEC ferroptosis, maintaining intestinal homeostasis, making it a potential clinical target for diagnosing and treating IBDs.
Keywords: Cell biology; Epithelial transport of ions and water; Inflammation; Inflammatory bowel disease; Molecular biology.