In this study, the properties of ultra-high-performance concrete (UHPC) were enhanced by adding modified polyvinyl alcohol (PVA) fibers. The specimens with different curing ages were evaluated in various aspects to investigate the effects of different dosages, lengths, and surface treatments of PVA fibers on the performance of UHPC. The performance was compared with that of steel fiber-reinforced UHPC with the same ratio and multiple dosages. At the same time, the distribution of fibers and the morphology of fibers were observed by a scanning electron microscope, and the mechanism of fiber reinforcement was discussed. The results showed that the mechanical properties were significantly affected by the fiber dosage, length, and surface treatment. Based on the test results, the optimum PVA fiber addition can increase the compressive strength and flexural strength by 12.0% and 6.0% compared to the control UHPC without fibers. A comprehensive evaluation was carried out and indicated that the optimum PVA fiber addition has the potential to replace 0.5% steel fiber in certain conditions.
Keywords: UHPC; enhancing mechanism; polyvinyl alcohol fiber.