Eutrophication leads to various environmental issues, including pollution caused by the production of algal organic matter (AOM). Algae typically respond to environmental changes (e.g., light, temperature, copper [Cu(II)] concentration and pH) by regulating the production and release of different substances, thereby causing unpredictable effects on water quality. We explored the characteristics of AOM and the response mechanisms of algae under Cu(II) stress in the study, using fluorescence spectrum and high-resolution mass spectrometry (HRMS) analysis. The growth of Microcystis aeruginosa was inhibited under Cu(II) stress which was irreversible at Cu(II) concentration ≥ 2 μmol/L. Tryptophan- and humic-like fluorophores were important constituents of extracellular organic matter (EOM), and their contents increased with the addition of Cu(II), indicating that Cu(II) stimulates the production of tryptophan- and humic-like compounds. In addition, fulvic acid-like compounds in EOM were the main components binding to Cu(II) and were overproduced by algae under Cu(II) stress. It was found by HRMS at the molecular level that the formula numbers of EOM generally increased over inhibition time. Under 1 μmol/L Cu(II) stress, nitrogenous compounds (CHON formulae) were the primary AOM, accounting for 37.3-52.0 %. In addition, algae release a large amount of condensed aromatic structures to balance Cu(II) stress. This study provides a molecular-level analysis to explain the variation trends and response mechanisms of algae under various Cu(II) concentrations. The research methods are helpful for utilizing multiple advanced analysis methods to study algae growth and AOM release.
Keywords: 2D COS analysis; Algal organic matter; Copper stress; Fluorescence; Molecular characteristics.
Copyright © 2024 Elsevier B.V. All rights reserved.