Denfivontinib activates effector T-cells through NLRP3-inflammasome, yielding potent anticancer effects by combination with pembrolizumab

Mol Cancer Ther. 2024 Dec 5. doi: 10.1158/1535-7163.MCT-24-0501. Online ahead of print.

Abstract

Various combination therapies have been investigated to overcome the limitations of using immune checkpoint inhibitors. However, determining the optimal combination therapy remains challenging. To overcome the therapeutical limitation, we conducted a translational research to elucidate the mechanisms by which AXL inhibition enhances the anti-tumor effects when combined with anti-PD-1 antibody therapy. Herein, we demonstrated improved antitumor effects through combination treatment with denfivontinib and pembrolizumab which resulted in enhanced differentiation into effector CD4+ and CD8+ memory T cells, accompanied by an increase in IFN-γ expression in the YHIM-2004 xenograft model derived from patients with NSCLC. Concurrently, a reduction in the number of immunosuppressive M2 macrophages and myeloid-derived suppressor cells was observed. Mechanistically, denfivontinib potentiated the NOD-like receptor pathway, thereby facilitating the NLRP3 inflammasome formation. This leads to macrophage activation via the NF-kB signaling pathway activation. We have confirmed that the positive interaction between macrophages and T cells arises from the enhanced antigen-presenting machinery of activated macrophages. Furthermore, the observed tumor effects in AXL knock-out mice confirmed that AXL inhibition by denfivontinib enhances the anti-tumor effects, thus opening new avenues for therapeutic interventions aimed at overcoming limitations in immunotherapy. To demonstrate the extent to which our findings reflect clinical results, we analyzed bulk-RNA sequencing data from 21 NSCLC patients undergoing anti-PD-1 immunotherapy. The NLRP3 inflammasome score influenced enhanced immune responses in patient data undergoing anti-PD-1 immunotherapy, suggesting a role for NLRP3 inflammasome in activating immune responses during treatment.