Oil spills have long-lasting and harmful impacts on the environment, particularly on aquatic ecosystems. This review provides a comprehensive overview of conventional methods for oil spill removal, highlighting both their advantages and limitations. Traditional methods for addressing oil spills, including physical, thermal, biological and chemical techniques, often prove insufficient, with chemical dispersants being the most popular approach. However, the concern about the toxicity and low biodegradability of these dispersants have led researchers to explore more effective and ecologically benign alternatives. Recently, surface-active ionic liquids (SAILs) have gained interest due to their amphiphilic nature, green and biodegradable characteristics, and excellent performance under various temperature and salinity conditions. In this review, the molecular composition of SAILs, with a specific emphasis on the roles of their head groups, alkyl chains, and counter anions, has been discussed. Additionally, the aggregation behavior of SAILs, their ability to reduce interfacial tension (IFT), and their potential to form stable emulsions, which are important for effective oil dispersion, has been also discussed in the paper. This review also examines key environmental factors such as temperature and salinity that influence the efficacy of oil dispersion using SAILs. The study investigates the possibilities of SAILs as an environmentally friendly substitute for conventional dispersants, while also discussing the challenges and possible future paths for the industry. However, the long-term environmental effects of SAILs and their degradation products are still uncertain, underscoring the necessity of future research. Insights into the optimization of SAIL formulations, their environmental impact, and the feasibility of large-scale application are also discussed, offering a forward-looking perspective on the development of next-generation oil spill remediation technologies.
Keywords: Conventional methods; Emulsion stability; Interfacial tension; Oil spill; Surface-active ionic liquids.
Copyright © 2024. Published by Elsevier B.V.