Most prior studies have indicated that pigeons have a tendency to rely on local information for target categorization, yet there is a lack of electrophysiological evidence to support this claim. The mesopallium ventrolaterale (MVL) is believed to play a role in processing both local and global information during visual cognition. The difference between responses of MVL neurons when pigeons are focusing on local versus global information during visual object categorization remain unknown. In this study, pigeons were trained to categorize hierarchical stimuli that maintained consistency in local and global information. Subsequently, stimuli with different local and global components were presented to examine the pigeons' behavioral preferences. Not surprisingly, the behavioral findings revealed that pigeons predominantly attended to the local elements when performing categorization tasks. Moreover, MVL neurons exhibited significantly distinct responses when pigeons prioritized local versus global information. Specifically, most recording sites showed heightened gamma band power and increased nonlinear entropy values, indicating strong neural responses and rich information when pigeons concentrated on the local components of an object. Furthermore, neural population functional connectivity was weaker when the pigeons focused on local elements, suggesting that individual neurons operated more independently and effectively when focusing on local features. These findings offer electrophysiological evidence supporting the notion of pigeons displaying a behavioral preference for local information. The study provides valuable insight into the understanding of cognitive processes of pigeons when presented with complex objects, and further sheds light on the neural mechanisms underlying pigeons' behavioral preference for attending to local information.
Keywords: Functional connectivity; Local preference; Mesopallium ventrolaterale; Object classification; Pigeon.
Copyright © 2024. Published by Elsevier B.V.