Lignocellulose is the most abundant, sustainable, and comparatively economical renewable biomass containing ample fermentable sugars for bio-based chemical production, such as lactic acid (LA). LA is a versatile chemical with substantial global demand. However, the concurrent utilization of mixed sugars derived from lignocellulose, including glucose, xylose, and arabinose, remains a formidable challenge because of the metabolic regulation of carbon catabolite repression (CCR), in which glucose is preferentially utilized over non-glucose sugars, resulting in the loss of carbon resources and a decrease in biorefinery efficacy. Most current studies on CCR have concentrated on elucidating the principles and their impact on specific bacterial species using mixed carbon sources. However, there remains a notable dearth of comprehensive reviews summarizing the underlying principles and corresponding mitigation strategies across other bacterial strains encountering similar challenges. In light of this, this article delineates the possible factors that lead to CCR, including signal transduction and metabolic pathways. Additionally, the fermentation conditions and nutrients are described. Finally, this study proposes appropriate mitigation strategies to overcome the aforementioned obstacles and presents new insights into the rapid and simultaneous consumption of mixed sugars to bolster the production yields of biofuels and chemicals in the future.
Keywords: Carbon catabolite repression; Lactic acid; Lignocellulose; Mitigation strategies; Mixed sugars; Molecular mechanisms.
Copyright © 2024. Published by Elsevier Inc.