Chlorogenic acid alleviates cadmium-induced neuronal injury in chicken cerebral cortex by inhibiting incomplete autophagy mediated by AMPK-ULK1 pathway

Poult Sci. 2024 Nov 26;104(1):104597. doi: 10.1016/j.psj.2024.104597. Online ahead of print.

Abstract

Cadmium (Cd) is an environmental pollutant that has neurotoxic properties, which poses serious threats to human health and the development of poultry farming. Chlorogenic acid (CGA) is a dietary polyphenol exhibit various biological activities such as antioxidant, anti-inflammatory, and autophagy regulation. In addition, CGA can penetrate the blood-brain barrier and exert neuroprotective effects. This study explored the mechanism of CGA in alleviating Cd-induced cerebral cortical neuron injury in chickens. The results showed that in vivo, CGA reduced the Cd level and alleviated Cd-induced histopathological and ultrastructural damages in the chicken cerebral cortex. Further research has found that CGA alleviated Cd-induced incomplete autophagy and activation of the AMPK-ULK1 pathway. In vitro, AMPK inhibitors (Compound C) could alleviate Cd-induced incomplete autophagy in chicken cerebral cortical neurons. In addition, CGA alleviated the decreased viability, incomplete autophagy, and activation of the AMPK-ULK1 pathway induced by Cd in chicken cerebral cortical neurons. In summary, CGA can alleviate Cd-induced cerebral cortical neuron injury in chickens, which is related to CGA alleviating Cd-induced incomplete autophagy by inhibiting the AMPK-ULK1 pathway.

Keywords: AMPK-ULK1 pathway; Cadmium; Chicken cerebral cortical neurons; Chlorogenic acid.