TV viewing is associated with health risks, but existing measures of TV viewing are imprecise due to relying on self-report. We developed the Family Level Assessment of Screen use in the Home (FLASH)-TV, a machine learning pipeline with state-of-the-art computer vision methods to measure children's TV viewing. In three studies, lab pilot (n = 10), lab validation (n = 30), and home validation (n = 20), we tested the validity of FLASH-TV 3.0 in task-based protocols which included video observations of children for 60 min. To establish a gold-standard to compare FLASH-TV output, the videos were labeled by trained staff at 5-second epochs for whenever the child watched TV. For the combined sample with valid data (n = 59), FLASH-TV 3.0 provided a mean 85% (SD 8%) accuracy, 80% (SD 17%) sensitivity, 86% (SD 8%) specificity, and 0.71 (SD 0.15) kappa, compared to gold-standard. The mean intra-class correlation (ICC) of child's TV viewing durations of FLASH-TV 3.0 to gold-standard was 0.86. Overall, FLASH-TV 3.0 correlated well with the gold standard across a diverse sample of children, but with higher variability among Black children than others. FLASH-TV provides a tool to estimate children's TV viewing and increase the precision of research on TV viewing's impact on children's health.
Keywords: Face detection; Gaze estimation; Machine learning; Screen media; Television.
© 2024. The Author(s).