In order to make use of the large biomass of tomato plant to fulfill the purpose of remediating-while-producing, two commercial tomato varieties, 'Baiguoqiangfeng' (BG) and 'Ouguan' (OG) were grown in Cd contaminated acidic soil to compare their performance on Cd phytoextraction, and monocalcium phosphate (Ca) was foliar applied to reduce their fruit Cd concentration. The results showed that the BG was a more Cd tolerant variety, comparing with OG, it suffered lighter tissue peroxidation and photosynthesis obstacle, owning weaker amino acid metabolism, secondary metabolism and stress signal transduction under Cd stress. The Ca application reduced its ABA level but increased the GSH, IAA, ZR and GA3 level, and enhanced its lysine degradation, tyrosine metabolism, alanine, asparagine and glutamate metabolism, plant hormone signal transduction and phenylpropanoid biosynthesis under Cd stress. With these metabolic regulations, the Ca application promoted its leaf biomass accumulation, guaranteeing the total Cd extraction amount (0.88 mg pot-1 as 0.20 mg kg -1), and reduced the fruit Cd partition, decreasing the fruit Cd concentration by 71.4% with higher yield. Meanwhile, the OG had lower Cd phytoextraction capacity than the BG, and Ca spray enhanced its cell energy generation, flavonoids biosynthesis and photosynthetic carbon fixation, but had no effect on fruit Cd concentration. The two tomato varieties had different responses to Ca application under Cd stress in their hormone signaling, energy metabolism, secondary metabolism and amino acids metabolism, which furtherly differed their Cd phytoextraction capacity and production safety. Therefore, the monocalcium phosphate spray combined 'Baiguoqiangfeng' tomato realized the dual function of production-phytoremediation, and the mechanism of plant Cd sensitivity adjustment through phenylpropanoid biosynthesis and amino acids metabolism deserved further study.
Keywords: Calcium foliar application; Cd contaminated soil; Phytoextraction; Soil Cd removal; Tomato.
Copyright © 2024. Published by Elsevier Ltd.