Background: Early life stress (ELS) refers to exposure to negative childhood experiences, such as neglect, disaster, and physical, mental, or emotional abuse. ELS can permanently alter the brain, leading to cognitive impairment, increased sensitivity to future stressors, and mental health risks. The prefrontal cortex (PFC) is a key brain region implicated in the effects of ELS.
Methods: To better understand the effects of ELS on the PFC, we ran a meta-analysis of publicly available transcriptional profiling datasets. We identified five datasets (GSE89692, GSE116416, GSE14720, GSE153043, GSE124387) that characterized the long-term effects of multi-day postnatal ELS paradigms (maternal separation, limited nesting/bedding) in male and female laboratory rodents (rats, mice). The outcome variable was gene expression in the PFC later in adulthood as measured by microarray or RNA-Seq. To conduct the meta-analysis, preprocessed gene expression data were extracted from the Gemma database. Following quality control, the final sample size was n=89: n=42 controls & n=47 ELS: GSE116416 n=23 (no outliers); GSE116416 n=44 (2 outliers); GSE14720 n=7 (no outliers); GSE153043 n=9 (1 outlier), and GSE124387 n=6 (no outliers). Differential expression was calculated using the limma pipeline followed by an empirical Bayes correction. For each gene, a random effects meta-analysis model was then fit to the ELS vs. Control effect sizes (Log2 Fold Changes) from each study.
Results: Our meta-analysis yielded stable estimates for 11,885 genes, identifying five genes with differential expression following ELS (false discovery rate< 0.05): transforming growth factor alpha (Tgfa), IQ motif containing GTPase activating protein 3 (Iqgap3), collagen, type XI, alpha 1 (Col11a1), claudin 11 (Cldn11) and myelin associated glycoprotein (Mag), all of which were downregulated. Broadly, gene sets associated with oligodendrocyte differentiation, myelination, and brain development were downregulated following ELS. In contrast, genes previously shown to be upregulated in Major Depressive Disorder patients were upregulated following ELS.
Conclusion: These findings suggest that ELS during critical periods of development may produce long-term effects on the efficiency of transmission in the PFC and drive changes in gene expression similar to those underlying depression.
Keywords: Early Life Stress; Meta-analysis; Microarray; RNA-Seq.