Vibrio vulnificus, a gram-negative pathogenic bacterium, transmitted via undercooked seafood or contaminated seawater, causes septicemia and wound infections. In this study, we analyzed 15 clinical and 11 environmental isolates. In total, 20 sequence types (STs), including eight novel STs, were identified. Antibiotic resistance gene analysis commonly detected the cyclic AMP receptor protein (CRP) in both the clinical and environmental isolates. Interestingly, clinical and environmental isolates were non-susceptible to third-generation cephalosporins, such as ceftazidime and cefotaxime, complicating the treatment of V. vulnificus infection. Multiple antibiotic resistance (MAR) index ranged from 0.1 to 0.5, with clinical isolates showing a higher mean MAR index than the environmental isolates, indicating their broader spectrum of resistance. Notable, no quantitative (124.3 vs. 126.5) and qualitative (adherence, antiphagocytosis, and chemotaxis/motility) differences in virulence factors were observed between the environmental and clinical strains. The molecular characteristics identified in this study provide insights into the virulence of V. vulnificus strains in South Korea, highlighting the need for continuous surveillance of antibiotic resistance in emerging V. vulnificus strains.
Keywords: Vibrio vulnificus; Antimicrobial resistance; Multi-locus sequence typing; Virulence factor; Whole-genome sequencing.
© 2024. The Author(s).