Background: Osteoarthritis (OA) is a common degenerative joint condition caused by an imbalance between cartilage synthesis and degradation, which disrupts joint homeostasis. This study investigated the anti-inflammatory and joint-improving effects of Pinus densiflora root extract powder (PDREP) in both in vitro and in vivo OA models.
Methods/results: In an in vitro OA model, in which SW1353 human chondrosarcoma cells were treated with interleukin (IL)-1β, PDREP treatment significantly reduced the mRNA levels of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 while enhancing collagen type II alpha 1 (Col2a1) mRNA level, and decreased IL-6 and prostaglandin E2 (PGE2) levels. In addition, PDREP inhibited the phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinase (JNK), p38, nuclear factor-kappa B (NF-κB), and the expression of inducible nitric oxide synthase (iNOS). In a monosodium iodoacetate (MIA)-induced OA rat model, the administration of PDREP resulted in decreased OA clinical indices, improved weight-bearing indices and gait patterns, reduced histological damage, and lowered serum inflammatory cytokine and MMPs expression. Furthermore, PDREP downregulated the phosphorylation of ERK, JNK, p38, and NF-κB, as well as the expression of iNOS, consistent with the in vitro findings.
Conclusions: These results suggest that PDREP exhibits anti-inflammatory and joint-improving effects and has potential as a therapeutic strategy or functional food for the treatment of OA.
Keywords: MAPKs; Pinus densiflora root; anti-inflammation; cartilage degradation; osteoarthritis.