Impacts of Climate Change-Induced Temperature Rise on Phenology, Physiology, and Yield in Three Red Grape Cultivars: Malbec, Bonarda, and Syrah

Plants (Basel). 2024 Nov 15;13(22):3219. doi: 10.3390/plants13223219.

Abstract

Climate change has significant implications for agriculture, especially in viticulture, where temperature plays a crucial role in grapevine (Vitis vinifera) growth. Mendoza's climate is ideal for producing high-quality wines, but 21st-century climate change is expected to have negative impacts. This study aimed to evaluate the effects of increased temperature on the phenology, physiology, and yield of Malbec, Bonarda, and Syrah. A field trial was conducted over two seasons (2019-2020 and 2020-2021) in an experimental vineyard with an active canopy heating system (+2-4 °C). Phenological stages (budburst, flowering, fruit set, veraison, harvest), shoot growth (SG), number of shoots (NS), stomatal conductance (gs), chlorophyll content (CC), chlorophyll fluorescence (CF), and water potential (ψa) were measured. Additionally, temperature, relative humidity, light intensity, and canopy temperature were recorded. Heat treatment advanced all phenological stages by approximately two weeks, increased SG and NS, and reduced gs and ψa during the hottest months. CC and CF remained unaffected. The treatment also resulted in lower yields, reduced acidity, and increased °Brix in both seasons. Overall, rising temperatures due to climate change advance the phenological phases of Malbec, Syrah, and Bonarda, leading to lower yields, higher °Brix, and lower acidity, although physiological variables remained largely unchanged.

Keywords: Vitis; heat stress; heat waves; phenological development; viticulture.