Artificial Intelligence and Machine Learning Models for Predicting Drug-Induced Kidney Injury in Small Molecules

Pharmaceuticals (Basel). 2024 Nov 19;17(11):1550. doi: 10.3390/ph17111550.

Abstract

Background/objectives: Drug-Induced Kidney Injury (DIKI) presents a significant challenge in drug development, often leading to clinical-stage failures. The early prediction of DIKI risk can improve drug safety and development efficiency. Existing models tend to focus on physicochemical properties alone, often overlooking drug-target interactions crucial for DIKI. This study introduces an AI/ML (artificial intelligence/machine learning) model that integrates both physicochemical properties and off-target interactions to enhance DIKI prediction.

Methods: We compiled a dataset of 360 FDA-classified compounds (231 non-nephrotoxic and 129 nephrotoxic) and predicted 6064 off-target interactions, 59% of which were validated in vitro. We also calculated 55 physicochemical properties for these compounds. Machine learning (ML) models were developed using four algorithms: Ridge Logistic Regression (RLR), Support Vector Machine (SVM), Random Forest (RF), and Neural Network (NN). These models were then combined into an ensemble model for enhanced performance.

Results: The ensemble model achieved an ROC-AUC of 0.86, with a sensitivity and specificity of 0.79 and 0.78, respectively. The key predictive features included 38 off-target interactions and physicochemical properties such as the number of metabolites, polar surface area (PSA), pKa, and fraction of Sp3-hybridized carbons (fsp3). These features effectively distinguished DIKI from non-DIKI compounds.

Conclusions: The integrated model, which combines both physicochemical properties and off-target interaction data, significantly improved DIKI prediction accuracy compared to models that rely on either data type alone. This AI/ML model provides a promising early screening tool for identifying compounds with lower DIKI risk, facilitating safer drug development.

Keywords: artificial intelligence; cheminformatics; computational toxicology; drug induced kidney injury; machine learning; off-target interactions.

Grants and funding

This work was supported by Neurocrine Biosciences, Inc., for authorship, corporate legal review, and publication of this article.