Wastewater-based epidemiology (WBE) has been an important tool for the detection of COVID-19 outbreaks. The retrospective analysis of COVID-19 data is vital to understand the spread and impact of the virus as well as to inform future planning and response efforts. In this study, we evaluated the SARS-CoV-2 RNA levels in wastewater from 21 wastewater treatment plants (WWTPs) in the City of Cape Town (South Africa) over a period of 12 months and compared the (inactive) SARS-CoV-2 viral RNA in wastewater between wave 2 (November 2020 to January 2021) and wave 3 (June 2021 to September 2021). The SARS-CoV-2 RNA expression was quantified in wastewater using quantitative real-time PCR (qRT-PCR) by targeting the nucleocapsid (N) gene, and the resultant signal was normalized to the WWTP design capacity and catchment size. Our findings show that the maximum SARS-CoV-2 RNA signal was significantly higher in wave 3 than in wave 2 (p < 0.01). The duration of wave 3 (15 weeks) was longer than that of wave 2 (10 weeks), and the wastewater surveillance data supported the clinical findings, as evidenced by the two distinct waves. Furthermore, the data demonstrated the importance of long-term wastewater surveillance as a key indicator of changing trends.
Keywords: COVID-19; SARS-CoV-2; South Africa; environmental epidemiology; viral RNA; wastewater.