Methods for Identifying Epilepsy Surgery Targets Using Invasive EEG: A Systematic Review

Biomedicines. 2024 Nov 13;12(11):2597. doi: 10.3390/biomedicines12112597.

Abstract

Background: The pre-surgical evaluation for drug-resistant epilepsy achieves seizure freedom in only 50-60% of patients. Efforts to identify quantitative intracranial EEG (qEEG) biomarkers of epileptogenicity are needed. This review summarizes and evaluates the design of qEEG studies, discusses barriers to biomarker adoption, and proposes refinements of qEEG study protocols.

Methods: We included exploratory and prediction prognostic studies from MEDLINE and Scopus published between 2017 and 2023 that investigated qEEG markers for identifying the epileptogenic network as the surgical target. Cohort parameters, ground truth references, and analytical approaches were extracted.

Results: Out of 1789 search results, 128 studies were included. The study designs were highly heterogeneous. Half of the studies included a non-consecutive cohort, with sample sizes ranging from 2 to 166 patients (median of 16). The most common minimum follow-up was one year, and the seizure onset zone was the most common ground truth. Prediction studies were heterogeneous in their analytical approaches, and only 25 studies validated the marker through post-surgical outcome prediction. Outcome prediction performance decreased in larger cohorts. Conversely, longer follow-up periods correlated with higher prediction accuracy, and connectivity-based approaches yielded better predictions. The data and code were available in only 9% of studies.

Conclusions: To enhance the validation qEEG markers, we propose standardizing study designs to resemble clinical trials. This includes using a consecutive cohort with long-term follow-up, validating against surgical resection as ground truth, and evaluating markers through post-surgical outcome prediction. These considerations would improve the reliability and clinical adoption of qEEG markers.

Keywords: biomarkers; epilepsy surgery; invasive EEG; outcome prediction; pharmacoresistant epilepsy; quantitative EEG.

Publication types

  • Review