Feature selection (FS) constitutes a critical stage within the realms of machine learning and data mining, with the objective of eliminating irrelevant features while guaranteeing model accuracy. Nevertheless, in datasets featuring a multitude of features, choosing the optimal feature poses a significant challenge. This study presents an enhanced Sand Cat Swarm Optimization algorithm (MSCSO) to improve the feature selection process, augmenting the algorithm's global search capacity and convergence rate via multiple innovative strategies. Specifically, this study devised logistic chaotic mapping and lens imaging reverse learning approaches for population initialization to enhance population diversity; balanced global exploration and local development capabilities through nonlinear parameter processing; and introduced a Weibull flight strategy and triangular parade strategy to optimize individual position updates. Additionally, the Gaussian-Cauchy mutation strategy was employed to improve the algorithm's ability to overcome local optima. The experimental results demonstrate that MSCSO performs well on 65.2% of the test functions in the CEC2005 benchmark test; on the 15 datasets of UCI, MSCSO achieved the best average fitness in 93.3% of the datasets and achieved the fewest feature selections in 86.7% of the datasets while attaining the best average accuracy across 100% of the datasets, significantly outperforming other comparative algorithms.
Keywords: artificial intelligence; feature selection; global optimization; sand cat population optimization.