Atomically intimate assembly of dual metal-oxide interfaces for tandem conversion of syngas to ethanol

Nat Nanotechnol. 2024 Nov 25. doi: 10.1038/s41565-024-01824-w. Online ahead of print.

Abstract

Selective conversion of syngas to value-added higher alcohols (containing two or more carbon atoms), particularly to a specific alcohol, is of great interest but remains challenging. Here we show that atomically intimate assembly of FeOx-Rh-ZrO2 dual interfaces by selectively architecting highly dispersed FeOx on ultrafine raft-like Rh clusters supported on tetragonal zirconia enables highly efficient tandem conversion of syngas to ethanol. The ethanol selectivity in oxygenates reached ~90% at CO conversion up to 51%, along with a markedly high space-time yield of ethanol of 668.2 mg gcat-1 h-1. In situ spectroscopic characterization and theoretical calculations reveal that Rh-ZrO2 interface promotes dissociative CO activation into CHx through a formate pathway, while the adjacent Rh-FeOx interface accelerates subsequent C-C coupling via nondissociative CO insertion. Consequently, these dual interfaces in atomic-scale proximity with complementary functionalities synergistically boost the exclusive formation of ethanol with exceptional productivity in a tandem manner.