Senescence-Related LncRNAs: Pioneering Indicators for Ovarian Cancer Outcomes

Phenomics. 2024 Sep 26;4(4):379-393. doi: 10.1007/s43657-024-00163-z. eCollection 2024 Aug.

Abstract

In gynecological oncology, ovarian cancer (OC) remains the most lethal, highlighting its significance in public health. Our research focused on the role of long non-coding RNA (lncRNA) in OC, particularly senescence-related lncRNAs (SnRlncRNAs), crucial for OC prognosis. Utilizing data from the genotype-tissue expression (GTEx) and cancer genome Atlas (TCGA), SnRlncRNAs were discerned and subsequently, a risk signature was sculpted using co-expression and differential expression analyses, Cox regression, and least absolute shrinkage and selection operator (LASSO). This signature's robustness was validated through time-dependent receiver operating characteristics (ROC), and multivariate Cox regression, with further validation in the international cancer genome consortium (ICGC). Gene set enrichment analyses (GSEA) unveiled pathways intertwined with risk groups. The ROC, alongside the nomogram and calibration outcomes, attested to the model's robust predictive accuracy. Of particular significance, our model has demonstrated superiority over several commonly utilized clinical indicators, such as stage and grade. Patients in the low-risk group demonstrated greater immune infiltration and varied drug sensitivities compared to other groups. Moreover, consensus clustering classified OC patients into four distinct groups based on the expression of 17 SnRlncRNAs, showing diverse survival rates. In conclusion, these findings underscored the robustness and reliability of our model and highlighted its potential for facilitating improved decision-making in the context of risk assessment, and demonstrated that these markers potentially served as robust, efficacious biomarkers and prognostic tools, offering insights into predicting OC response to anticancer therapeutics.

Supplementary information: The online version contains supplementary material available at 10.1007/s43657-024-00163-z.

Keywords: Bioinformatics; Cluster; Long non-coding RNAs; Ovarian cancer; Senescence.

Publication types

  • Review