Intravitreal (IVT) injection is an uncommon route of parenteral administration for therapeutic medications, but one of the most important for the treatment of ocular diseases, especially those related to macular degeneration. Nonetheless, there are currently no regulatory guidelines that specifically address how to establish a permitted daily exposure (PDE) for impurities and residual process reagents in IVT pharmaceutical drug products given the unique vulnerability of ocular tissues. The establishment of PDEs for IVT administration is complicated by the limited understanding of metabolism and clearance of small molecular weight chemicals from the human vitreous humor (VH), a problem compounded by the limited IVT-specific toxicological data. In this paper, we describe a feasible and comprehensive methodology for deriving PDE limits for impurities and residual process reagents from IVT drug products, as exemplified by five case studies, including inorganic elements, formic acid, polyethylene glycols, acetic acid, and caprolactam. The five case studies were selected to cover compounds with a wide range of impurity sources and toxicological data availability. The proposed framework considers both local ocular and systemic toxicity endpoints and advances the goal of a harmonized, science-based approach for deriving IVT PDE limits.
Keywords: Acetic acid; Caprolactam; Formic acid; Inorganic elements; Intravitreal (IVT) administration; Permitted daily exposure (PDE); Polyethylene glycols.
Copyright © 2024. Published by Elsevier Inc.