Oligodendrocytes use postsynaptic proteins to coordinate myelin formation on axons of distinct neurotransmitter classes

bioRxiv [Preprint]. 2024 Nov 9:2024.10.02.616365. doi: 10.1101/2024.10.02.616365.

Abstract

Axon myelination can tune neuronal circuits through placement and modulation of different patterns of myelin sheaths on distinct types of axons. How myelin formation is coordinated on distinct axon classes remains largely unknown. Recent work indicates neuronal activity and vesicle release promote myelin formation, and myelin-producing oligodendrocytes express canonical postsynaptic factors that potentially facilitate oligodendrocyte-axon interaction for myelin ensheathment. Here, we examined whether the inhibitory postsynaptic scaffold protein Gephyrin (Gphn) mediates selective myelination of specific axon classes in the larval zebrafish. Consistent with this possibility, Gphn was enriched in myelin on GABAergic and glycinergic axons. Strikingly, in gphnb deficient larvae, myelin sheaths were longer specifically on GABAergic axons, and the frequency of myelin placement shifted toward glutamatergic axons at the expense of GABAergic axons. Collectively, our results indicate that oligodendrocytes use postsynaptic machinery to coordinate myelin formation in an axon identity-dependent manner.

Publication types

  • Preprint