Childhood adversity (CA) is associated with increased risk of negative health outcomes. Research implicates brain structure following CA as a key mechanism of this risk, and recent models suggest different forms of adversity differentially impact neural structure as a function of development (accelerated or attenuated development). Employing the Dimensional Model of Adversity and Psychopathology, we examined whether deprivation and threat differentially impact age-related change in cortical thickness, cortical surface area, and subcortical structure volume, using whole-brain and region of interest analyses (N = 135). In youth without CA, age predicted less surface area across adolescence, consistent with normative data. However, for adolescents with more deprivation exposure, as age increased there was attenuated surface area decreases in the orbitofrontal and superior-parietal cortex, regions recruited for higher-order cognition. Further, for those with more threat exposure, as age increased surface area increased in the inferior-temporal and parietal cortex, regions recruited in socio-emotional tasks. These novel findings extend work examining the impact of dimensions of adversity at a single-age and broaden current conceptualizations of how adversity might impact developmental timing.
Keywords: adolescents; child adversity; early childhood; neglect; neurocognition.